Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.02 vteřin. 
Mechanical properties of basalt: a study on compressive loading at different strain rates using SHPB
Falta, J. ; Krčmářová, N. ; Fíla, T. ; Vavro, Martin ; Vavro, Leona
This article focuses on the mechanical properties of basalt in compressive loading at different strain-rates. The study employs advanced instrumentation for the evaluation of the results in dynamic conditions, while standard uni-axial loading device is used for evaluation in quasi-static conditions. Basalt specimens were subjected to four different loading-rates from 200–600 s−1 on which the stress-strain dependence was evaluated together with DIC analysis of crack initiation and disintegration process. Understanding the mechanical properties of basalt can provide insights for engineers and designers in creating structures that are durable and able to withstand different loading conditions. The findings of this study can have implications for a wide range of industries, including aerospace, automotive, and construction, among others.
High strain-rate compressive testing of filling materials for inter-penetrating phase composites
Doktor, T. ; Fíla, T. ; Zlámal, Petr ; Kytýř, Daniel ; Jiroušek, O.
In this study behavior of the selected types of filling material for the inter-penetrating phase composites was tested in compressive loading mode at low and high strain-rates. Three types of the filling material were tested, (i) ordnance gelatin, (ii) low expansion polyurethane foam, and (iii) polyurethane putty. To evaluate their impact energy absorption bulk samples of the selected materials were tested in compression loading mode at strain-rates 1000 s−1 to 4000 s−1. The high strain-rate compressive loading was provided by Split Hopkinson Pressure Bar (SHPB) which was equipped with PMMA bars to enable testing of cellular materials with low mechanical impedance. Based on the comparative measurement response to compression at both low and high strain-rates was analysed. The results show a significant strain-rate sensitivity of the ordnance gelatin and of the polyurethane putty, while strain-rate effect in the polyurethane foam was not observed.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.